
Grey-box Analysis and Fuzzing of Automotive Electronic
Components via Control-Flow Graph Extraction

Andreea-Ina Radu
Flavio D. Garcia

a.i.radu@cs.bham.ac.uk
f.garcia@cs.bham.ac.uk

University of Birmingham
Birmingham, United Kingdom

ABSTRACT
Electronic Control Units are embedded systems which control the
functionality of a modern vehicle. The growing number of Elec-
tronic Control Units in a vehicle, together with their increasing
complexity, prompts the need for automated tools to test their
security.

To this end, we present EffCAN, a tool for ECU firmware fuzzing
via Controller Area Network. EffCAN operates on the Control Flow
Graph, which we extract from the firmware. The Control Flow
Graph is a platform independent representation, which allows us
to abstract from the often obscure underlying architecture. The
Control Flow Graph is annotated with information about static
data comparisons that affect the control flow of the firmware. This
information is used to create initial seeds for the fuzzer. It is also
used to adapt the input messages in order to cover hard to reach
execution paths. We have evaluated EffCAN on three Electronic
Control Units, from different manufacturers. The fuzzer was able
to crash two of the units. To our knowledge, this is the first ap-
proach that uses static analysis to guide the fuzzing of automotive
Electronic Control Units.

CCS CONCEPTS
• Computer systems organization → Firmware; • Security
and privacy→ Systems security.

KEYWORDS
automotive, electronic control unit, fuzzing

ACM Reference Format:
Andreea-Ina Radu and Flavio D. Garcia. 2020. Grey-boxAnalysis and Fuzzing
of Automotive Electronic Components via Control-Flow Graph Extraction.
In Computer Science in Cars Symposium (CSCS ’20), December 2, 2020, Feld-
kirchen, Germany. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3385958.3430480

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CSCS ’20, December 2, 2020, Feldkirchen, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7621-1/20/06. . . $15.00
https://doi.org/10.1145/3385958.3430480

1 INTRODUCTION
Until recently, the in-vehicle network was considered a safe, trusted
environment. Resistance against inside malicious adversaries was
not considered. Vehicles have not benefited from the scrutiny that
many of the computerised systems surrounding us have, until re-
cently. Nowadays, a vehicle has upwards of 70 Electronic Control
Units (ECUs) and, the manufacturer outsources the design of the
hardware and development of the firmware to first tier suppliers.
First tier suppliers may, in turn, outsource tasks to other companies.
The many stakeholders and complexities of the supply chain make
tracking of responsibility difficult.

Often, when firmware is outsourced, manufacturers receive only
the firmware image, which they upload to the hardware. The source
code is not shared with the manufacturer, which means no code
auditing can take place, and component testing is limited to the
requirements specifications. Furthermore, code reuse is a common
practice in software development, but it has been shown to enable
vulnerabilities to infiltrate into software [Hanna et al. 2012; Pham
et al. 2010; Xia et al. 2014]. Creating a tool to test the ECUs using a
gray box approach will allow manufacturers to gain some security
guarantees about the outsourced firmware.

Challenges. The hardware and architectures of ECUs are hugely
diverse. Most ECUs have bare-metal firmware, (i.e. they do not
have an operating system), and directly interface with low-level
hardware and peripherals. Additionally, the Microcontroller Units
(MCUs) used in ECUs are automotive-specific. They have extra
functionality and registers (e.g. for Controller Area Network (CAN)
communication), when compared to their generic counterparts.

ECUs are built on a wide range of chips and architectures, which
makes creating an automated, ‘universal’, solution for analysing
their firmware difficult, and it is hard to scale up the processes.
Binary Independent Languages (BILs) are designed to fill this gap
(e.g. BAP1, VEX2), by providing an abstraction layer from the under-
lying instruction set, and using an Intermediate Representation (IR)
to describe the operations performed by the MCU. However, ex-
isting BILs support only a limited number of mainstream archi-
tectures. BAP [Brumley et al. 2011] supports ARM, x86, x86–64,
PowerPC (PPC), and MIPS. VEX requires an operating system, not
providing support for bare-metal firmware [Developers 2017]. This
means the technique of lifting the ECU firmware to an IR would
be too cumbersome to contemplate. Another possible approach to

1https://github.com/BinaryAnalysisPlatform/bap
2https://docs.angr.io/advanced-topics/ir

https://doi.org/10.1145/3385958.3430480
https://doi.org/10.1145/3385958.3430480
https://doi.org/10.1145/3385958.3430480
https://github.com/BinaryAnalysisPlatform/bap
https://docs.angr.io/advanced-topics/ir

CSCS ’20, December 2, 2020, Feldkirchen, Germany Andreea-Ina Radu and Flavio D. Garcia

analyse embedded firmware is by running it in a simulated envi-
ronment, but emulators which support automotive MCUs do not
yet exist, therefore profiles for these would need to be developed.
In [Gustafson et al. 2019], Gustafson et. al. explain that the abun-
dance of incompatible embedded MCUs and the vast collection
of peripherals make emulators with extensive embedded device
support unattainable. They also highlight that analysing embedded
device firmware entails a considerable manual and time-consuming
effort, due to the absence of standards for components and proto-
cols.

Analysing bare-metal firmware requires in-depth knowledge
about the underlying hardware, and documentation is an important
resource. Obtaining the user manuals for the automotive-specific
chips proved to be a difficult task, as they were often not available.

In terms of tools, the only feasible choice is Interactive Dis-
Assembler (IDA), a state-of-the-art disassembler. IDA is the only
disassembler which had some form of support for all the architec-
tures and MCUs analysed. However, IDA does not have profiles for
the automotive versions of the MCUs, and additional annotation
with the extra functionality is required.

When loading bare-metal firmware into IDA, further information
needs to be supplied, such as reset vectors. These are considered
the entry points of the firmware. IDA is able to disassemble by itself
only minor parts (if any) of the firmware. To achieve maximal code
coverage, we explore a number of architecture specific solutions in
Section 3. Extracting an accurate Control Flow Graph (CFG) from
a binary and ensuring correct function detection is an ongoing
open problem [Andriesse et al. 2017; Bao et al. 2014; Bruschi et al.
2006; Kinder and Veith 2008; Nguyen et al. 2013; Shin et al. 2015],
especially with respect to resolving indirect branch instructions.
Therefore, some manual guidance and clean-up is still required, but
the time needed to bring the disassembled code to a satisfying level
is considerably reduced. By manual guidance and clean-up, we refer
to the user going through the disassembly and making informed de-
cisions on whether the instructions recovered and functions created
are correct or not.

As Muench et. al. [Muench et al. 2018] point out in their research,
fuzz-testing embedded devices differs from fuzzing desktop systems,
due to the limited IO and computing power. They argue that silent
memory corruptions are much more frequent on embedded devices
and they pose a challenge when trying to detectwhat the exact state
of the device was when it crashed. Unexpected behaviours could
be immediate and observable, delayed, or malfunctions (where the
device memory is corrupted and computations are incorrect, but
there is no crash). Their arguments are entirely transferable to ECU
fuzzing, and identifying such behaviours was the main challenge
for our fuzzer. We had to define what it means for an ECU to
crash. One way of determining crashes is observing the output
of the program under test. However, when working with ECUs
via CAN communication, the output from the devices is extremely
limited. The CAN bus is a broadcast network, where ECUs have pre-
established message identifiers (IDs) they use to send their data on.
The only bi-directional communication is for Unified Diagnostics
Services, which is used for diagnostic purposes and do not appear
in normal vehicle operation. Therefore, there is no real method of
establishing the internal state of the ECU, or if any error occurred.
Also, obtaining execution traces from a component is a difficult,

if not impossible, task as ECUs often times lack such debugging
support.

Furthermore, when fuzzing CAN communication, the CAN IDs
the component uses in its communication must be taken into ac-
count. In a scenario where the ECU is nothing more than a black
box, the IDs become part of the search space, significantly increas-
ing the time needed for fuzzing. The communication matrix of a
vehicle, or of an ECU, describes which signals are sent and received
by which ECU, and on which IDs. Such knowledge would be very
useful for the fuzzing process: it would allow us to target only IDs
the ECU listens to. However, a communication matrix is a well kept
industry secret and not readily available.

Contribution. This paper proposes a fuzzer for ECUs which uses
information from the ECU firmware in guiding its fuzz testing
process. The purpose of the tool is to automatically test ECUs for
vulnerabilities or, more generally, for bugs which would lead to
system crashes.

We propose a method for extracting the CFG of the firmware and
annotating it with information about static data used in deciding
the control flow of the program. The method also involves semi-
automated instruction recovery and function detection for ECU
firmware, a challenging task because ECUs are built on a diverse
set of architectures and hardware.

We present a fuzzer, EffCAN, which communicates with an ECU
via CAN. The fuzzer uses the static data information from the
extracted CFG in creating initial input seeds, and prioritises hard
to reach paths in the input transformation procedure. To the best
of our knowledge, this work presents the first fuzzer which does
not solely rely on randomness in forming CAN messages.

We have evaluated the fuzzer on three ECUs, with positive results
on two of them.

2 RELATEDWORK
In this sectionwe review relevant literature in connection to firmware
analysis and to fuzzing.

Firmware analysis. The vast amount of program analysis re-
search has been concerned mostly with binaries that run within an
operating system. However, ECUs have firmware which presents
itself as a single, monolithic binary. The firmware binary contains
all the functionality of the device and the interaction with the hard-
ware is done in a direct manner. This type of firmware is highly
tailored to the underlying hardware it runs on and requires strong
knowledge about the device architecture and instruction set used
by the MCU.

In the context of automotive security, remote keyless entry sys-
tems have received a lot of attention [Garcia et al. 2016; Hicks et al.
2018; Verdult et al. 2015]. Assessing their security usually involves
reverse engineering a (proprietary) cipher from the firmware of the
immobiliser or ECU and finding weaknesses. However, the reverse
engineering process is never fully described, as the cryptographic
algorithms are the main scope of the research. Similarly, ciphers
used in authenticating to diagnostic protocols running on ECUs
are reverse engineered in [den Herrewegen and Garcia 2018], but
there is no description of the process.

Grey-box Analysis and Fuzzing of Automotive Electronic Components via Control-Flow Graph Extraction CSCS ’20, December 2, 2020, Feldkirchen, Germany

The only instance of detailed ECU firmware analysis comes from
Miller and Valasek in [Miller and Valasek 2015]. They reverse engi-
neered the firmware from a V850 chip which was responsible for
dealing with the CAN communication on the ECU they were inves-
tigating. They explain that the procedure took them ‘several weeks’,
highlighting the extensive effort required. Their ultimate goal was
to modify the firmware to accept commands via Serial Peripheral
Interface and send CAN messages based on these. Interestingly,
the authors mention they had disassembled parts of the firmware
incorrectly, treating areas which were supposed to be data as code,
and this lead to further delays and confusion. From their research
we can learn important information, such as the fragility of the
disassembly process and the value of understanding the hardware
specification and architecture, information which we applied in
Section 3.

Fuzzing. Most fuzzers proposed in the literature [Rawat et al.
2017; Stephens et al. 2016; Zalewski 2014], are targeted at operating
and file systems, or protocols, and are not suitable for fuzzing ECUs.
They require the ability to execute (part of) the program being
tested, to emulate it, or require information about what execution
path was triggered by the given input. As previously mentioned,
no viable emulators for automotive MCUs exist, and obtaining
execution traces from the hardware is often impossible.

A few instances of applying fuzzing to test the security of the
automotive components and CAN bus exist, but they all rely on
randomly choosing the bytes of a CAN messages.

Lee et. al. [Lee et al. 2015] demonstrated they could sniff the
packets from a vehicle, through an On-Board Diagnostics (OBD-II)
Bluetooth dongle, and use the knowledge acquired about which
CAN IDs are in use. They then fuzzed each byte of the 8 bytes
of the possible payload by choosing a random value, and setting
the rest to zero. They observed changes in the Instrument Panel
Cluster (IPC) signals or in physical components in the vehicle (e.g.
lights).

Bayer and Ptok [Bayer and Ptok 2015] present an Unified Di-
agnostics Services (UDS) fuzzer, which is able to create messages
with sequence numbers, as expected by the protocol. They claim
the fuzzer is block-based, in that it understands and is aware of
what specific fields within the message mean. It can therefore au-
tomatically produce correct values for these (e.g. for a checksum
field). No other information is given about the strategies the tool
uses.

Fowler et. al. [Fowler et al. 2017] argue that the existing design
process for ECUs should be extended with automated fuzz-testing,
informed by the connections and data from of the in-vehicle net-
work, and describe such a fuzzer in [Fowler et al. 2018]. Their tool
fuzzes CAN packets payloads and IDs, and uses the bit flip strat-
egy, randomising CAN payloads. They evaluated the tool against
a simulator, an actual ECU (an IPC), the fuzzer was able to trigger
odd behaviour, such as negative Rotations Per Minute, activating
warning lights and sounds, and displaying a crash message. The
latter behaviour persisted through power cycles of the IPC, and the
researchers decided to limit full vehicle testing to a small subset of
CAN IDs.

Patki, Gothindikar and Mane [Patki et al. 2018] present another
UDS fuzzer, which uses valid UDS messages and ‘mutates’ the

Figure 1: From left to right, the ECUs we worked with are:
VW IPC, Ford BCM, Ford ECM.

payload in order to create invalid messages, which are then sent
to the ECU being tested. They create invalid messages by using
invalid values in the Data Length Code (DLC) field, invalid values
for the service sub-functions or invalid inputs in which all bytes
are 0x00 or 0xFF. The authors report that some services do not
respond according to the specification of the UDS standard [ISO
2013].

3 EXTRACTING THE CONTROL FLOW
GRAPH FROM ECU FIRMWARE

Program analysis is widely used for understanding firmware func-
tionality, in the absence of the source code. Disassembling is, most
commonly, the first step in the analysis, involving a disassembler
to translate machine code from a compiled binary to a low-level
language, assembly. Due to the obscure architectures ECUs tend to
use, even IDA does not handle these binaries gracefully. Therefore,
analysing ECUs firmware can be a laborious and tedious, manual
task. Even simply loading the firmware correctly into IDA requires
manually creating the memory layout, identifying the entry point(s)
and mapping of registers for automotive-specific functionality. Ad-
ditionally, the task of distinguishing code from data sections is left
to the user, thus requiring strong knowledge of the device architec-
ture and being able to discern between genuine code and wrongly
interpreted code.

Firmware acquisition.We analysed the firmware of three ECUs.
We obtained the firmware from the ECUs flash memory by using
automotive programmers [usp [n.d.]].

Tools.We used IDA for disassembling the firmware, automated
by developing our own IDAPython scripts. We used the igraph
Python module for storing and working with the CFG, as it allows
labelling of vertices and edges, and has good support for efficiently
saving the graph to storage.

The ECUs we worked with are shown in Figure 1:
• Volkswagen Passat IPC — ARM architecture (ARM CDC
3297G-C MCU);
• Ford Fiesta Body Control Module (BCM) — PPC architecture
(SPC560B);
• Ford Kuga Engine Control Module (ECM)— Infineon TriCore
architecture (SAK-TC1793F MCU).

3.1 Register Documentation
One of the first issues tackled is the lack of automotive-specific
knowledge of IDA about the MCUs. For example, for the ARM ECU
(ARM CDC 3297G-C MCU), one can choose the ARM processor,
and specify the start address and size for the Random Access Mem-
ory (RAM) and Read Only Memory (ROM) sections, as well as the

CSCS ’20, December 2, 2020, Feldkirchen, Germany Andreea-Ina Radu and Flavio D. Garcia

{

"can_comm_objects": {

"label" : "CO",

"base_addr" : "0xF80000",

"include_label": "1",

"iterations" : "5",

"reg_size" : "1",

"size": "0x10",

"payload": {

"CTRL": "0x00",

"ID28 .21": "0x01",

"ID20 .13": "0x02",

"ID12 .05": "0x03",

"ID04 .00 _CTRL": "0x04",

"DLC_CTRL": "0x05",

"Data": {

"offset": "0x06",

"iterations": "8"

},

"timestamp_low": "0x0d",

"timestamp_high": "0x0e"

}

}

}

IO:F80000 CO0_CTRL % 1

IO:F80001 CO0_ID28.21 % 1

IO:F80002 CO0_ID20.13 % 1

IO:F80003 CO0_ID12.05 % 1

IO:F80004 CO0_ID04.00_CTRL % 1

IO:F80005 CO0_DLC_CTRL % 1

IO:F80006 CO0_Data0 % 1

IO:F80007 CO0_Data1 % 1

IO:F80008 CO0_Data2 % 1

IO:F80009 CO0_Data3 % 1

IO:F8000A CO0_Data4 % 1

IO:F8000B CO0_Data5 % 1

IO:F8000C CO0_Data6 % 1

IO:F8000D CO0_Data7 % 1

IO:F8000E CO0_timestamp_low % 1

IO:F8000F CO0_timestamp_high % 1

Figure 2: Example describing registers as JavaScript Object
Notation (JSON), for the ARM CDC 3297G MCU, on the left;
IDA excerpt, after applying the registers mapping for the
first CANCommunication Object, on the right. The %1 value
for each register denotes the size (1 byte).

offset at which the binary should be loaded. IDA presents the user
with a warning that it cannot analyse the binary automatically,
and displays the byte values of the firmware. The MCU datasheet
provides information of the memory layout, what addresses do the
RAM, ROM, Input/Output (IO) segments have, etc. This informa-
tion needs to be manually transferred into IDA, in order to create a
correct MCU profile.

In order to help document the registers, we described the regis-
ters in JSON format and developed a script that annotates annotates
the names, creates the appropriate sizes, and adds comments. Fig-
ure 2 shows an excerpt from applying the mapping to the IDA
database. If the keyword "payload" exists, the object is consid-
ered a group of registers. The "base_addr" keyword contains the
address from which the group starts, and each register will con-
tain an "offset", which is added to the base address to obtain the
register’s address. If the "payload" keyword does not exist, the
structure is considered one single register. The size of the registers
from the group can be specified with the "reg_size" property,
but it can also be declared for one specific register. The "code"
keyword means that instead of converting the address to a byte/-
word/dword, the script will try to create an instruction. Setting the
"include_label" property to True (1) will prepend the "label"
to the register name. In some cases, objects are mapped to reg-
isters, such as in the case of the CAN Communication Objects.
Multiple such objects are defined in the CAN-RAM area of the IO
segment, and contain CAN messages either received or scheduled
to be broadcast. The size of the object can be defined by using the
"size" keyword, and the number of objects to be mapped can be
specified through the "iterations" property.

Mapping interesting registers, such as CAN, CANmessage buffers,
Interrupt Source Nodes (ISNs) or ports, helps improve the readabil-
ity of the code when manually inspecting it. By documenting them
in JSON format, together with the mapping script, the aim is to have
a structured and extensible way of dealing with the lack of support
and of easily adding the missing information to IDA. The method
can be improved by combining the script with a PDF scraper, which
could automatically generate the JSON file, as many datasheets
have tables which specify the base address, offset and name of each
register. IDA allows additional annotation of registers, interrupts
and ports through its own .cfg files. However, in the .cfg files,
each register needs to be defined individually. In the case of the
example above, for CAN Communication Objects, each register
would have to be defined 5 times (as the number of iterations is 5).
Our method is much more flexible, and more compact. It can, in
fact, be used to generate IDA .cfg files, if so desired, in a much
more efficient way.

3.2 Disassembling Electronic Control Unit
Firmware

As IDA does not recognise the entry point of the firmware binary,
guidance needs to be provided. Firstly, the reset vector is given as
entry point. Based on the datasheets, the reset vector is, generally,
at the first address in ROM. This will reveal the main loop of the
firmware. Other registers can be considered entry points, such as
the ISNs, Software Interrupt vector, CAN Interrupt Index Register.
This applies to all MCUs in the test set and can be used across
architectures. However, using these entry points does not guarantee
that the whole program will be covered. Indirect jumps or jump
tables may not be recognised by the disassembler, and therefore
need manual intervention. Also, there may be areas of unreachable
code, possible leftovers from testing the firmware. The remainder
of this section explains the methods tested on each architecture.
The effort of establishing these methods is a one-off cost, as they
can be used on all ECUs with MCUs of the architecture.

Disassembling ARM. With respect to our ARM ECU, once we
have loaded the firmware, other architecture options can be set,
such as the version of the ARM instruction set, whether the board is
a Variable Floating Point co-processor, or it uses the advanced single
instruction multiple data extension (mainly used in signal process-
ing for media applications). All these pieces of information require
a strong understanding of the hardware we are working with. The
datasheet of the CDC 3297G chip specifies it uses ARM7TDMI
MCU, which leads us to believe it uses the ARMv4T instruction set
(Thumb enabled)3.

One of the heuristics tested was forcefully creating functions at
each address in the ROM segment of the firmware. As IDA cannot
distinguish between .code and .data areas in the ROM, there
will be areas where data is stored, but is wrongly disassembled as
code. In order to overcome this, the functions that were successfully
created are logged into a file, and a clean database of the firmware is
3ARM7TDMI first appears in MCUs from the 1990s, which used the ARMv3 instruc-
tion set. However, it also appears in MCUs from the 2000s and later, which use the
ARMv4 instruction set. No further information is given in the datasheets, but the brief
document for the CDC 32xxG MCU family, detailing their suitability as car dashboard
controllers, is dated 2000 [bri 2000] and therefore it is more likely our component uses
ARMv4.

Grey-box Analysis and Fuzzing of Automotive Electronic Components via Control-Flow Graph Extraction CSCS ’20, December 2, 2020, Feldkirchen, Germany

Table 1: Filter and mask for determining Thumb instruc-
tions. Together with the PUSH instruction, they are used for
recovering more code from the target firmware.

Instruction Filter Mask
(bits) (bits)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SUB 1 1 1 1 1 0 1 0 0 0 0 1 1 0 1 0

LDR 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0

MOVS 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0

BL (offset low) 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0
BL (offset high) 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0

loaded. Code is created only at the addresses which were previously
logged.

Next, instructions patterns which are used in the prologue of
functions are identified, and used to recover more code. Most of the
firmware code uses the Thumb instruction set, therefore we target
the following instructions:

• PUSH [...] SUB
• PUSH [...] BL
• PUSH [...] LDRr
• PUSH [...] MOVS

The instructions are represented on 2 bytes (except BL) and are
identified based on the opcodes they use. The PUSH instruction has
the opcode 0xb5 (if the Link Register (LR) is also pushed) or 0xb4
(without LR), followed by a byte representing which of the registers
R0-R7 are used. For the other instructions, masks and filters are
defined, in order to determine if the instruction following a PUSH is
indeed one of the previously mentioned ones. Table 1 shows the
values defined. The filter determines which bits are of interest, and
the mask determines what the value of those bits should be. The
branch with link instruction (BL) is represented on 4 bytes, first
containing the upper 11 bits of the target address, then the 11 bits
of the lower half of the address.

The result is a fairly clean version of the firmware with code
made at relevant addresses. However, due to misinterpretation
between ARM and Thumb, some parts of the code were created as
ARM, when they were in fact Thumb, and thus are not recognised
as valid functions, and this behaviour is not rectified by setting the
Thumb segment register.

In order to deal with this, we wrote an IDAPython script, which
determines the changes in the Thumb segment register, undefines
the sections which are ARM code, and re-sets the Thumb register.
It then iterates through the whole ROM segment and logs the ad-
dresses where the changes from Thumb to ARM still happen, and
these can then be used to manually inspect the code around that
address. Some parts of the recovered code will belong to genuine
functions, but the end of the functions is set at an earlier address.
This is solved by adding the chunks of instructions to the original
functions. The code navigation bar helped in identifying end ar-
eas for the code being inspected. We found that the script greatly
aided the process by targeting specific areas. Using these methods,

e_lwz rA, DMR

se_mtctr rA

se_bctrl

where rA represents a general register,
and DMR represents a Direct Memory Ref-
erence.

Figure 3: Load address to control register pattern and branch
to address in control register.

60.21% of the firmware was converted into explored addresses4.
17.52% of the firmware is a block of 0xFFs, therefore only 22.27%
of the firmware code could not be automatically disassembled and
requires further manual inspection.

Disassembling PowerPC. For the PPC firmware, we have to make
sure the IDA settings are correct. We set the processor as big-endian
PPC, select the Signal Processing Engine (SPE) instruction set and
enable Variable Length Encoding (VLE). IDA has support for a few
PPC devices, and we select mpc5xx, as this is the generic version of
the board our ECU uses.

For this ECU we were able to obtain the flash and the RAM
contents. Therefore, we have to create the RAM segment, and also
the IO segment. From the datasheet we know that the reset vector is
located at address 0x04, and this is the point fromwherewe start our
analysis. The vector points to ROM address 0x160. Once we create
code at that address, we analyse the functions that spawn from there
(in our case, 94 new functions were created). We notice that 66% of
the functions start with the se_mflr r0 instruction, which moves
the contents of the Link Register into register 0. We wrote a script
which looks for the instruction opcode and operand, 0x00 0x80,
creating 5063 new functions with this method. As with the ARM
code, some of the functions have the ending set before the function
actually ends, leaving some instructions on the outside. Therefore
we need to manually adjust these. As functions tend to end with a
se_blr instruction, we can easily determine if instructions which
do not belong to any function should, in fact, be part of the function
that exists before them. Otherwise, we mark the set of instructions
as their own function, and inspect the code around it. Next, we
observe that indirect jumps are used (a control register is used in
controlling the flow of the firmware). A set of three instructions is
used (Figure 3); first, a general register is loaded with an address
from the ROM. Then, the control register is loaded with the address
the register points to. The flow of the program then branches to the
address contained in the control register. Therefore, by extracting
the addresses referenced by the Direct Memory Reference (DMR),
we can discover more functions of the firmware.

Using this method 52.77% of the ROMwas recognised as explored
addresses. The firmware contains two large blocks of bytes with the
value 0xFF, towards the end of the ROM address space. The blocks
represent 23.21% of the size of the firmware. Therefore, 24.02% of
the firmware needs to be further manually inspected.

Disassembling Infineon TriCore. The Infineon TriCore ECU was
the most challenging out of the components we worked with. The
documentation for the MCU was sparse, and the Infineon website
did not contain the user manual for the TC1793 MCU, and instead
linked to the user manual of the TC1798 MCU. The two MCUs
are from the same family, though comparing the datasheets of the
4IDA marks an address as explored if it is correctly recognised as code or data.

CSCS ’20, December 2, 2020, Feldkirchen, Germany Andreea-Ina Radu and Flavio D. Garcia

two revealed a few minor differences, such as the TC1793 having
fewer Analog-to-Digital Converters and fewer General Purpose In-
put/Output lines. Conflicting information was found in datasheets
and user manuals with respect to the location of the reset vector,
with some specifying the reset vector is at offset 0x0 in the flash
memory, and others placing the Interrupt Table Vector at that ad-
dress. Regardless, our firmware had a bank of zeroes as the first
16393 bytes, so neither sources seemed to be correct.

Furthermore, while IDA does have support for TriCore, none of
the device profiles match the TC1793/TC1798. Therefore, we start
off with a device IDA does know, TC1797, remove all segments
which do not match the specification of the TC1793, and create the
correct ones. The flash memory of the TC1793 is divided between
two address ranges, each of 2 Kbytes, and so we need to split and
load the firmware at the appropriate offsets. Once the memory
map was correctly recreated and the firmware loaded, we can start
considering retrieving functions.

Unlike ARM and PPC, TriCore has eliminated the need for func-
tion prologues and epilogues, through code optimisation [Tech-
nologies 2003]. Therefore, searching for opcodes would not help,
for this particular architecture. We used the forceful code creation
method, combined with manual inspection of code. While more
time consuming, the method has successfully led to 54% of the total
address space to be recognised as explored. The firmware contained
three large blocks of byte values 0xC3, amounting to 11.81% of its
size. 34% of the firmware required further inspection.

3.3 Control Flow Graph Extraction
This section describes how we extract the CFG, in order to later
use it with the fuzzer. In order to create an accurate CFG, we use
an intermediary object, named a Control Flow List (CFL). The CFL
is obtained by calling the Flowchart() function provided by the
IDAPython Application Program Interface (API). The function re-
turns a list of BasicBlock objects, which contain information about
the start and end address of the basic block, as well as two lists, one
being the predecessors of the basic block, and one containing the
successors.

Once satisfied the CFL is accurate, it can be used to create the
graph, using the Python igraph module. The start and end address
of the basic block are added as vertex attributes. The vertices will
later be labelled with a static data value, if the branch of the basic
block is dependent on a comparison with it (more details in Sec-
tion 4.1). The edges will be labelled with the condition that needs
to be met in order to go down that path. Edges that point from a
vertex to itself are ignored.

CFG Extraction from ARM Firmware. As previously mentioned in
Section 3.2, calls to Thumb addresses are not correctly handled by
IDA. It does not correctly identify a call to a Thumb function as the
end of a basic block. Therefore, the CFG needs to be amended, such
that it more accurately represents the firmware. Thumb functions
are called using a pattern of three instructions, as represented in
Figure 4. The value of the DMR determines the address of the
Thumb function.

Given a CFL created strictly with the results returned by the
Flowchart() function, and the previously identified Thumb func-
tion calls, we amend the CFL to split the basic blocks containing

LDR rA, DMR

MOV LR, PC

BX rA

where rA represents a general register,
and DMR represents a Direct Memory Ref-
erence.

Figure 4: Pattern for branch to THUMB function, from ARM
code.

calls to Thumb functions, adding the Thumb function to the suc-
cessors of the first new basic block, and the second new basic block
as a successor to the first one.

CFG Extraction from PowerPC Firmware. As discussed in Sec-
tion 3.2, some functions are accessed by being referenced through
a DMR. The Flowchart() function of the IDAPython API does not
recognise these as part of the control flow of the firmware.

Similarly to the procedure used for the ARM firmware, we create
the CFL by calling the Flowchart() function, then we look for the
pattern of instructions presented in Figure 3. We extract the address
referenced by the DMR, and amend the basic blocks to include the
function correctly.

CFG Extraction from Infineon TriCore Firmware. The CFG extrac-
tion is straightforward for the TriCore firmware, as there are no
functions loaded through DMR accesses. The Flowchart() func-
tion returns the correct CFG, and we only need to create the Graph
object, based on its information. Figure 5 shows the extracted CFG
of one function, from the Engine Control Module ECU (Infineon
TriCore). It shows the labelling of the vertices with basic block
information, such as start and end addresses and last instruction of
the basic block, as well as static data used in deciding the control
flow of the firmware.

4 FUZZING ELECTRONIC CONTROL UNITS
The role of the work described in Section 3, is to enable the design
of a CAN fuzzer which uses static data extracted from the ECU
firmware to create CAN messages. This section describes how the
data is extracted and the design of the fuzzer.

Tools and Setup. The diagram in Figure 6 shows the hardware
setup required by the fuzzer.

In order to communicate with an ECU we used the PeakCAN
USB interface5 (2) together with the OBD-II connector6 (3), which
are connected to the laptop (1) running the fuzzer. We used a bread-
board (4) for wire management. The PeakCAN is connected to the
target ECU though the CAN pins on the OBD-II connector (3) and
on the device under test (6). An external power supply (5) pro-
vides the required 12V. The PCAN Python API provides the module
PCANBasic, which handles the initialisation and configuration of
communication channels, as well as transmitting and receiving
CANmessages. We continue using the igraphmodule for manupu-
lating and working with the program CFG and we use the pickle7
module for storing the graph to disk.

5PCAN-USB: CAN Interface for USB
(https://www.peak-system.com/PCAN-USB.199.0.html?&L=1)
6PCAN-Cable OBD-2: CAN-OBD-2 Diagnostics Cable
(https://www.peak-system.com/PCAN-Cable-OBD-2.273.0.html?&L=1)
7Python module for serialising and de-serialising object structures (Python pickle
documentation: https://docs.python.org/3/library/pickle.html).

https://www.peak-system.com/PCAN-USB.199.0.html?&L=1
https://www.peak-system.com/PCAN-USB.199.0.html?&L=1
https://www.peak-system.com/PCAN-Cable-OBD-2.273.0.html?&L=1
https://www.peak-system.com/PCAN-Cable-OBD-2.273.0.html?&L=1
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html

Grey-box Analysis and Fuzzing of Automotive Electronic Components via Control-Flow Graph Extraction CSCS ’20, December 2, 2020, Feldkirchen, Germany

0

1

7

2

14

3

4

5

6

8

9

10

11

12

13

entry
point

d:0x00
i:jlt

sEA:0x4969c
eEA:0x496b6

d:0x02
i:jlt

sEA:0x496b6
eEA:0x496ba

d:0x02
i:jeq32

sEA:0x496ba
eEA:0x496be

i:j16

sEA:0x496be
eEA:0x496c0

d:0x00
i:jeq32

sEA:0x496c0
eEA:0x496cc

d:0x00
i:jz16sEA:0x496cc

eEA:0x496de

i:j16 sEA:0x496de
eEA:0x496e0

i:j16

sEA:0x496e0
eEA:0x496e4

d:0x00
i:jeq32

sEA:0x496e4
eEA:0x496ee

d:0x02
i:jeq16

sEA:0x496ee
eEA:0x496f6

d:0x04
i:jeq16

sEA:0x496f6
eEA:0x496f8

i:j16

sEA:0x496f8
eEA:0x496fa

i:j16

sEA:0x496fa
eEA:0x4970e

i:call32

sEA:0x4970e
eEA:0x49720

i:ret16

sEA:0x49720
eEA:0x49724

Figure 5: Extracted CFG, representing the basic blocks of
one function. Each basic block was tagged with information
about the start address (sEA), end address (eEA), static data
used in comparisons (d) and the last instruction of the ba-
sic block (i). The function is from the ECM ECU, Infineon
TriCore architecture

Figure 6: Fuzzer hardware setup.

4.1 Data Extraction
The first step towards creating the fuzzer is the data extraction step.
This process still requires the disassembly, as we will use it to label
the firmware CFG with additional information, but after this step,
any further work can be done without the need of IDA.

Control Flow Graph Tagging. The CFG is labelled with the static
data values used in comparisons by looking for instruction patterns.

Table 2: Example of instruction patterns for identifying
comparisons with static data for the three architectures
studied. IMMED refers to an immediate value, rA and rB are
general registers and ADDR is a ROM address within the
firmware.

ARM Architecture

CMP rA, IMMED
BEQ ADDR

MOVS rA, IMMED
CMP rB, rA
BGT ADDR

PPC Architecture

e_lis rB, IMMED1
e_add16i rB, rB, IMMED2
se_cmpl rA, rB
se_bne ADDR

e_cmpi cr0, rA, IMMED
se_bne ADDR

se_cmpli rA, IMMED
se_bge ADDR

Infineon TriCore Architecture

jne32 rA, IMMED, ADDR mov16 rA, IMMED
jge.u rA, rB, ADDR

jz16 rA, ADDR

These patterns are architecture-dependent, as shown in Table 2. The
data is then set as an attribute for the vertex corresponding to the
basic block. The edges of the graph are labelled with the instruction
the program control would take in order to go down that path. For
this purpose we define an Antonyms dictionary, through which we
map the opposite instruction for each branch or jump instruction
we encounter (e.g. BEQ – BNE). The instructions will later be used
by the fuzzer in determining what values could a byte take, while
still respecting the condition of the branch or jump instruction.

Lastly, the vertices are also labelled with probability and weight
metrics, and the edges with the probability metric. Inspired by
VUzzer [Rawat et al. 2017], we calculate the probability that a
basic block will be reached. For this, we take as starting point a
vertex which has an in-degree of 0 and we identify all vertices
that can be reached from it, by performing a breath first search.
Then we iterate over the search result and calculate the probabilities
accordingly. The weight is the inverse of the probability, for vertices.
The probability of the edges is dependent on the out-degree of the
originating node:

𝑝𝑒 (𝑖, 𝑗) =
1

𝑜𝑢𝑡_𝑑𝑒𝑔(𝑖) (1)

where 𝑝𝑒 (𝑖, 𝑗) is the probability of the edge between vertices 𝑖 and
𝑗 , and 𝑜𝑢𝑡_𝑑𝑒𝑔(𝑖) is the out-degree of vertex 𝑖 . The module sympy
is used to solve the probabilities of vertices which are part of a
cycle. The metrics are used by the fuzzer to determine which byte
of the payload to fuzz. Bytes corresponding to basic blocks with
high weights will be given priority.

Figure 7 shows the CFG for one function, from the BCMfirmware,
having its vertices tagged with basic block start address, static data
that influences the branch condition, probability and weight, and
its edges tagged with the probability and the instruction satisfying
the specific paths.

Forming Input Seeds for the Fuzzer. In creating the data chains
we take advantage of the small payload of the CAN frames, by

CSCS ’20, December 2, 2020, Feldkirchen, Germany Andreea-Ina Radu and Flavio D. Garcia

Last instruction of
basic block legend:

se bge

se beq

se b

se bne

other instruction

0x35b8

0x35ee 0x35e4

0x35fc

0x3604

0x36d4

0x36dc

0x35f6

0x35fa0x3644

0x36d0

0x36500x3656

0x365c

0x3662
0x36ca

0x36a6 0x36bc

0x36b0

0x360a

0x361a 0x3624

0x362a

0x3636

0.5
se blt

0.5
se bge

1

1

0.5
se bne

0.5
se beq

0.5
se bne

0.5
se beq

1

0.5
se bne

0.5
se beq

1

1

0.5
se bne

1

0.5
se beq

0.5
se beq

1

0.5
se bne

0.5
se beq

1

0.5
se bne

0.5

0.5

1

1

0.5
se beq

0.5
se bne

1

0.5

0.5

1

1

entry
point

d:0x02
p = 1
w = 1

p = 0.5
w = 2

d:0x01
p = 0.5
w = 2

d:0x02
p = 0.25
w = 4

p = 0.12
w = 8

d:0x02
p = 0.25
w = 4

p = 0.12
w = 8

d:0x00
p = 0.12
w = 8

p = 0.06
w = 16

p = 0.12
w = 8

p = 0.06
w = 16

p = 0.06
w = 16

d:0x05
p = 0.12
w = 8

p = 0.06
w = 16

d:0x00
p = 0.06
w = 16

p = 0.03
w = 32

d:0x00
p = 0.03
w = 32

p = 0.02
w = 64

p = 0.01
w = 128

p = 0.01
w = 128

p = 0.02
w = 64

p = 0.12
w = 8

p = 0.86
w = 1.16

p = 1
w = 1

Figure 7: Example CFG of one function (from the BCM, PPC
architecture), after its basic blocks have been tagged with
probabilities (p) and weights (w), by applying (1) to each ba-
sic block, with the static data on which the control flow is
decided (d) and with the probabilities for the paths (values
on the edges). The vertex label is the start address of the ba-
sic block.

creating payloads with at most 8 bytes. We assume that the pay-
load bytes are processed sequentially, in consecutive basic blocks.
Algorithm 1 describes the process of extracting the data chains. We
iterate through the vertices of the CFG and look for those which
have been tagged with data (function startEA_with_data). These
will be the starting points for the exploration algorithm. For each
starting point, we then perform a depth-first search of the CFG,
through the function find_paths (line 6). We begin at a given
vertex start_vertex, up to a maximum depth of max_depth, and
search for as long as comparisons with static data occur in consec-
utive vertices. The function stores a list of vertex sequences that
have been explored in paths_found. This leaves us with a list of
vertex sequences stored in vids. In lines 9–13, we extract the static
data associated with those vertices and build the list data. Each
path in vids has a corresponding path in data.

After the chains have been extracted, a list of Payload (Listing 1)
objects is created. Each instance has as attributes the data chain list,
the vertices ids list corresponding to the data, a list which will keep
track of which bytes have been modified, as well as a probabilities
list and a weights list for the basic blocks corresponding to the data.

Algorithm 1 explore_cfg

Input: 𝑐 𝑓 𝑔 # CFG of firmware analysed
Output: 𝑣𝑖𝑑𝑠 , 𝑑𝑎𝑡𝑎 # 𝑣𝑖𝑑𝑠 contains the lists of vertex indexes, 𝑑𝑎𝑡𝑎 contains the lists of data

payloads
1: 𝑑𝑎𝑡𝑎_𝑠𝑡𝑎𝑟𝑡𝐸𝐴𝑠 ← startEA_with_data(𝑐 𝑓 𝑔) # retrieve a list of vertices where

comparisons with static data occurs
2: 𝑣𝑖𝑑𝑠 ← list() # declare new list
3: for 𝑠𝑡𝑎𝑟𝑡_𝑣𝑒𝑟𝑡𝑒𝑥 in 𝑑𝑎𝑡𝑎_𝑠𝑡𝑎𝑟𝑡𝐸𝐴𝑠 do
4: 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑_𝑣𝑖𝑑𝑠 ← list() # declare new list
5: 𝑝𝑎𝑡ℎ𝑠_𝑓 𝑜𝑢𝑛𝑑 ← list() # declare new list
6: find_paths(𝑐 𝑓 𝑔, 𝑠𝑡𝑎𝑟𝑡_𝑣𝑒𝑟𝑡𝑒𝑥, 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑_𝑣𝑖𝑑𝑠,

𝑝𝑎𝑡ℎ𝑠_𝑓 𝑜𝑢𝑛𝑑,𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ)
7: 𝑣𝑖𝑑𝑠.extend(𝑝𝑎𝑡ℎ𝑠_𝑓 𝑜𝑢𝑛𝑑) # add all found paths to list
8: end for
9: 𝑑𝑎𝑡𝑎 ← list() # declare new list

for each path of vertices found, create a corresponding list of the static data values:
10: for 𝑝𝑎𝑡ℎ in 𝑣𝑖𝑑𝑠 do
11: 𝑝𝑎𝑡ℎ_𝑑𝑎𝑡𝑎 ← list() # declare new list
12: for 𝑣𝑒𝑟𝑡𝑒𝑥 in 𝑝𝑎𝑡ℎ do
13: 𝑝𝑎𝑡ℎ_𝑑𝑎𝑡𝑎.append(𝑐 𝑓 𝑔.𝑣𝑠 [𝑣𝑒𝑟𝑡𝑒𝑥] [”data”]) # extract data from CFG
14: end for
15: 𝑑𝑎𝑡𝑎.append(𝑝𝑎𝑡ℎ_𝑑𝑎𝑡𝑎) # add the list with the data sequence to the list
16: end for
17: return (𝑣𝑖𝑑𝑠,𝑑𝑎𝑡𝑎)

Listing 1: Definition of the Payload class and its member at-
tributes
class Payload(object):

def __init__(self , payload , vids , probability_score ,

weight):

self.payload = list(payload)

self.vids = list(vids)

self.fuzzed_bytes = [False for _ in len(self.

payload)]

self.probability_score = list(probability_score)

self.weight = list(weight)

4.2 Fuzzer Design
The following section is concerned with the design and implemen-
tation of the fuzzer. It presents the heuristics for the seed transfor-
mation, as well as the options the program has implemented.

Fuzzer Prerequisites. The program takes as input the following
arguments:

> python2 effCAN.py <arch > <suffix > <cfg -file > <queue/

payload > <USB -device > [resume]

where:
<arch> is the architecture of the target ECUfirmware: arm/ppc/tricore
(mandatory);
<suffix> is the suffix of the vertices and data file; it helps distin-
guish files if multiple ECUs with the same architecture have been
analysed – (mandatory);
<cfg-file> is the CFG file of the firmware, saved in pickle format
– (mandatory);
<queue/payload> is the method of fuzzing; the program can either
fuzz one byte for each payload in the queue and wrap around or can
fuzz all bytes in each payload, then move on to the next payload
(mandatory);
<USB-device> is the number of PCAN interface, as seen on the
host computer (mandatory);
[resume] signals to the fuzzer it should continue from the last
known state (optional).

Grey-box Analysis and Fuzzing of Automotive Electronic Components via Control-Flow Graph Extraction CSCS ’20, December 2, 2020, Feldkirchen, Germany

Based on the arguments specified, the program looks for the
following files:
payloads_<arch>_<suffix>.pickle: the file contains the list of
Payload objects;
payloads_resume_<arch>_<suffix>.pickle: the file contains the
list of fuzzed Payload objects; used in order to resume fuzzing from
a saved state; this file is sought only if the resume option is enabled;
ids_<arch>_<suffix>.pickle: the file contains the CAN IDs the
fuzzer will send messages on; if the file does not exist, it will try all
possible IDs.

Input Transformation. For each branch/jump instruction, a func-
tion is defined that will choose a random value such that the condi-
tion is still respected. This is used in the input transformation.

The fuzzing process is iterative and works as follows. Given a
queue of Payload objects, the first value is popped, and the payload
is subject to transformation. If the program is run with the queue
option, one of the bytes of the payload is chosen to be modified.
A new value is chosen, such that the instruction condition is re-
spected. The new message is sent over the CAN interface, and a
new Payload object, with the modified payload, is added to the end
of the queue. If the payload option is chosen, all the bytes of the
payload are subject to transformation, and this whole new value is
sent over CAN to the ECU, then added to the queue.

The transformation function operates on one Payload object
at a time. It looks if there are any bytes which have not yet been
fuzzed, then looks at the probabilities of these bytes. It will choose
the byte with the lowest probability, and it will choose a random
value that still respects the condition of the instruction that defined
it. For example, if the instructions sequence was

CMP rA, 0x40

BGT ADDR

and we are on a path that takes the branch, the value has to
be in the interval (0x40, 0xFF]. If a new value cannot be cho-
sen, the initial value of the payload is retrieved and the process
is repeated8. Once all the bytes have been fuzzed, in the queue
mode, the fuzzed_bytes list is reset. For the payload mode, the
fuzzed_bytes list is not used, as all bytes are fuzzed in each itera-
tion.

Crash Detection. As discussed in Section 1, knowing what a crash
means with respect to an ECU is difficult, due to the limited output
and feedback they provide. Furthermore, as ECU firmware logic
is mostly driven by interrupts, reproducibility of a result is prob-
lematic. This is due to the difficulty of guaranteeing the ECU is in
exactly the same state on two different runs.

Our fuzzer uses two methods of detecting crashes, depending on
the information available about the ECU: message timeout or the
UDS Tester Present service. Both methods detect crashes based on
the CAN traffic the ECU under testing outputs. Before the fuzzing
process starts, the program listens for all the messages the ECU
sends data on and keeps a record of them. While sending fuzzed
payloads, it also listens to incoming traffic. If a message on a new
CAN ID is recorded, it will flag this up for inspection.
8There may be cases in which a byte cannot get another new value, e.g. if the immediate
value of a BLT instruction has been fuzzed to 0x0 in a previous iteration, the values
interval would be [0, 0) . In order to avoid this, we retrieve the original value of the
payload and operation can resume normally.

Figure 8: Volkswagen IPC in testing.

For the timeout method, if the ECU stops sending messages for
a specified time (parameter), it considers the ECU has crashed. For
the Tester Present service, the CAN ID for UDS needs to be known.
After each fuzzed payload is sent to the ECU, a request is made to
the Tester Present service (0x3E). If the service responds, regardless
of whether it has a positive or negative reply, it means the ECU is
still functioning. If there is no response, within a specified time, it
considers the ECU has crashed. The delay in response is also logged,
and this can be analysed and potentially provide clues as whether
certain messages introduce a greater delay. This could mean the
ECU was in a possibly unexpected state.

5 EVALUATION AND RESULTS
The evaluation process consisted of two steps: first, we tested
whether the input seeds we extracted from the firmware are rele-
vant to the appropriate ECUs, without any transformation being
applied; we then ran the fuzzer on the ECUs mentioned in Section 3.

For the first step, after we extracted the byte sequences, we tested
the validity of the data chains. As previously mentioned, working
with ECUs is tricky, as CAN communication is unidirectional and
there is no feeback for a sent message. The best target for testing
was the Volkswagen IPC, as it has a multitude of visual outputs,
in the form of gauges and indicators. As we did not know the
CAN IDs the ECU was programmed to listen to, we sent the data
chains extracted from the firmware on all possible IDs, without
any further modification. We visually monitored the IPC and noted
if any of the gauge needles moved, if indicators changed status
or if the information of the display was modified. The test was
successful, as seen in Figure 8. The sent CAN messages did indeed
trigger the various lights the panel had and moved the speed and
the tachometer needles in a rapid succession. Therefore, our initial
hypothesis, that data on which the control flow of the firmware is
decided is more likely to be meaningful to the ECU than randomly
chosen messages, is validated.

We then tested the fuzzer on the three ECUs, and EffCAN pro-
duced crashes in two of them. We reiterate that due to the limited
feedback the ECUs provide, the results cannot always be explained,
and we can only hypothesise about them. During the tests we
have observed unexpected behaviours from the ECUs, where they
stopped communicating via the CAN bus. This type of behaviour
can be very dangerous, especially in the case of safety-critical ECUs,
such as the ECM. For most situations, rebooting the ECU enabled
it to resume normal function. However, for the BCM, on three sep-
arate occasions, the ECU did not work as expected after reboot. It

CSCS ’20, December 2, 2020, Feldkirchen, Germany Andreea-Ina Radu and Flavio D. Garcia

required a cool-off time of about 2-4 hours, but we cannot explain
the need for it. The ECU Printed Circuit Board does not have any
large capacitors, the one possible explanation we considered feasi-
ble for the ECU to be able to retain its state for such a long time.
The results were not reproducible by replaying the same set of CAN
messages to the BCM. This is not highly surprising; as mentioned
previously, the ECU is driven by interrupts, therefore making sure
it is in the exact same state twice is difficult without execution
traces.

Nonetheless, our results are highly promising. We demonstrate
that data extracted from the ECU firmware is more meaningful
than randomly chosen data, and that fuzzing with this data as input
seeds leads to crashes and unexpected behaviours. This research
lays the ground work for what we hope will be further research
into the security of the ECUs, and creating automated frameworks
and tools for analysing the firmware of electronic components is a
crucial part of assessing the security of ECUs.

Future research directions. While the results are positive, there
are areas that can be further developed. Firmware analysis still has
a number of open research questions, such as control flow recov-
ery, function identification and data structure recovery, the former
two upon which we touch in this article. Handing indirect func-
tion calls and indirect branch instructions are the main challenge
for this, especially in cases where control flow is transferred via
function pointers or the destination address may be dynamically
computed [Di Federico et al. 2017]. Function pointers complicate
function detection as well, therefore a heuristic cannot only rely
on explicit function calls. Improvements in these areas will allow
for a more accurate CFG recovery, having a better representation
of the firmware analysed, and therefore improving any heuristics
inferred from said analysis.

Evidently, executing the firmwarewe are trying to test is a central
part of a fuzzer. In our solution, we chose a hardware-in-the-loop
system, but this is not a highly scalable option, as it requires ad-
ditional hardware to parallelise the procedure. Given the issues
with full emulation discussed in the Challenges section, significant
engineering commitments would be required to bring ECU support
to existing emulators. Partial emulation could cover some of the pit-
falls of full emulation. For example, Frankenstein [Ruge et al. 2020]
solves the issue of unknown memory map of embedded devices by
emulating the firmware and delegating any memory map function-
ality back to the device, such that it is retrieved straight from an
execution run. Nevertheless, their main limitation of emulating the
firmware is the support for a limited number of architectures.

Finally, one of the most significant improvements that could be
brought is identifying the cause of the crashes. For our solution, we
used physically observable behaviours or gaps in the communica-
tion with the device. However, the feedback loop can be improved
by identify the root cause of the events and, as we mentioned earlier,
by establishing what the state of the device is when a crash occurs,
which would also improve reproducibility. Using instrumentation
in order to track the specific execution path taken when provided
with an input would also increase the performance of the fuzzer,
as this would allow for better control flow coverage, and enable a
more efficient exploration of the firmware functionality. However,

this solution needs to deal with the pollution caused by additional
paths that time-based interrupts would introduce.

6 CONCLUSION
Most state-of-the-art fuzzers from the literature have an emula-
tion component, or some form of feedback from executing the
program with a given input, which informs the next iteration of
input transformation. Our fuzzer purely relies on static analysis,
as obtaining hardware execution traces from ECUs is a complex,
if not impossible, task. Furthermore, good emulators for automo-
tive MCUs are not available, and the effort involved in developing
them is high. The tools for automotive-specific research are not yet
mature enough to allow for fully automated, large scale analyses,
which is why we believe our approach is a good step in beginning
to fill this large gap.

In this paper, we have proposed a method for analysing automo-
tive ECU firmware, by extracting the control flow of the firmware
into a CFG structure. This allows tools to be built, regardless of
the underlying architecture of the ECU. Due to the large number
of architectures ECUs are built on, the sparsity of documentation
and the limited number of documented attempts of ECU firmware
analysis, this has been a challenging task, and we believe it presents
a high entry barrier for possible researchers having an interest in
the field. As there is only one other description of analysing ECU
firmware, we strongly believe in the added value of the explanations
we have provided.

Furthermore, we have presented a fuzzer for ECUs, which com-
municates with a target component via the CAN bus. The fuzzer
uses data extracted from the firmware running on the ECU and
is guided by the CFG of the firmware in its seed transformation
process. To our knowledge, this is the first automotive fuzzer avail-
able in the literature that relies on something more complex than
randomly choosing the bytes of the messages to send. Our tests
show that indeed this methodology yields better results than the
purely random strategy.

REFERENCES
[n.d.]. Tools for Automotive Repairing. http://www.usprog.ru/index.php/en/news/

usp.html
2000. CDC 32xxG – Car Dashboard Controllers. http://pdf.datasheetcatalog.com/

datasheet/MicronasIntermetall/mXvsrxz.pdf
Dennis Andriesse, Asia Slowinska, and Herbert Bos. 2017. Compiler-agnostic function

detection in binaries. In 2017 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 177–189.

Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley. 2014.
BYTEWEIGHT: Learning to Recognize Functions in Binary Code. In 23rd USENIX
Security Symposium (USENIX Security 14). 845–860.

Stephanie Bayer and Alexander Ptok. 2015. Don’t Fuss about Fuzzing: Fuzzing Con-
trollers in Vehicular Networks. (2015).

David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. 2011. BAP: A
binary analysis platform. In International Conference on Computer Aided Verification.
Springer, 463–469.

Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. 2006. Detecting self-mutating
malware using control-flow graph matching. In International conference on detection
of intrusions and malware, and vulnerability assessment. Springer, 129–143.

Jan Van den Herrewegen and Flavio D. Garcia. 2018. Beneath the Bonnet: A Break-
down of Diagnostic Security. In 23rd European Symposium on Research in Computer
Security (ESORICS 2018), Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 11098). Springer, 305–324. https://doi.org/10.1007/978-3-319-99073-6

Valgrind Developers. 2017. Valgrind supported architectures. http://www.valgrind.
org/info/platforms.html

Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. 2017. rev. ng: a unified
binary analysis framework to recover CFGs and function boundaries. In Proceedings
of the 26th International Conference on Compiler Construction. 131–141.

http://www.usprog.ru/index.php/en/news/usp.html
http://www.usprog.ru/index.php/en/news/usp.html
http://pdf.datasheetcatalog.com/datasheet/MicronasIntermetall/mXvsrxz.pdf
http://pdf.datasheetcatalog.com/datasheet/MicronasIntermetall/mXvsrxz.pdf
https://doi.org/10.1007/978-3-319-99073-6
http://www.valgrind.org/info/platforms.html
http://www.valgrind.org/info/platforms.html

Grey-box Analysis and Fuzzing of Automotive Electronic Components via Control-Flow Graph Extraction CSCS ’20, December 2, 2020, Feldkirchen, Germany

Daniel S Fowler, Jeremy Bryans, and Siraj Shaikh. 2017. Automating fuzz test generation
to improve the security of the Controller Area Network. (2017).

Daniel S Fowler, Jeremy Bryans, Siraj Ahmed Shaikh, and Paul Wooderson. 2018. Fuzz
Testing for Automotive Cyber-Security. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W). IEEE, 239–
246.

Flavio D. Garcia, David Oswald, Timo Kasper, and Pierre Pavlidès. 2016. Lock It and
Still Lose It - On the (In)Security of Automotive Remote Keyless Entry Systems.
In 25nd USENIX Security Symposium (USENIX Security 2016), to appear. USENIX
Association.

Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind Machiry, Yanick
Fratantonio, Davide Balzarotti, Aurélien Francillon, Yung Ryn Choe, Christophe
Kruegel, et al. 2019. Toward the Analysis of Embedded Firmware through Auto-
mated Re-hosting. In 22nd International Symposium on Research in Attacks, Intrusions
and Defenses ({RAID} 2019). 135–150.

Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and Dawn Song. 2012.
Juxtapp: A scalable system for detecting code reuse among android applications. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 62–81.

Christopher Hicks, Flavio D Garcia, and David Oswald. 2018. Dismantling the AUT64
Automotive Cipher. IACR Transactions on Cryptographic Hardware and Embedded
Systems (2018), 46–69.

ISO. 2013. 14229: 2013 – Road Vehicles – Unified diagnostic services (UDS). Standard.
International Organization for Standardization.

Johannes Kinder andHelmut Veith. 2008. Jakstab: A static analysis platform for binaries.
In International Conference on Computer Aided Verification. Springer, 423–427.

Hyeryun Lee, Kyunghee Choi, Kihyun Chung, Jaein Kim, and Kangbin Yim. 2015.
Fuzzing can packets into automobiles. In 2015 IEEE 29th International Conference
on Advanced Information Networking and Applications. IEEE, 817–821.

Charlie Miller and Chris Valasek. 2015. Remote Exploitation of an Unaltered Passenger
Vehicle. http://illmatics.com/Remote%20Car%20Hacking.pdf

Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide Balzarotti.
2018. What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded
Devices.. In NDSS.

Minh Hai Nguyen, Thien Binh Nguyen, Thanh Tho Quan, and Mizuhito Ogawa. 2013.
A hybrid approach for control flow graph construction from binary code. In 2013
20th Asia-Pacific Software Engineering Conference (APSEC), Vol. 2. IEEE, 159–164.

Pranav Patki, Ajey Gotkhindikar, and Sunil Mane. 2018. Intelligent Fuzz Testing
Framework for Finding Hidden Vulnerabilities in Automotive Environment. In
2018 Fourth International Conference on Computing Communication Control and
Automation (ICCUBEA). IEEE, 1–4.

Nam H Pham, Tung Thanh Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. 2010.
Detection of recurring software vulnerabilities. In Proceedings of the IEEE/ACM
international conference on Automated software engineering. ACM, 447–456.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and
Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing.. In NDSS,
Vol. 17. 1–14.

Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick. 2020. Frankenstein:
Advanced Wireless Fuzzing to Exploit New Bluetooth Escalation Targets. In 29th
USENIX Security Symposium (USENIX Security 20). 19–36.

Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing functions
in binaries with neural networks. In 24th USENIX Security Symposium (USENIX
Security 15). 611–626.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo
Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. 2016.
Driller: Augmenting Fuzzing Through Selective Symbolic Execution.. In NDSS,
Vol. 16. 1–16.

Infineon Technologies. 2003. TriCore Compiler Writer’s Guide.
https://www.infineon.com/dgdl/inf0010_v1_4Dec2003_1.pdf?fileId=
db3a304412b407950112b40f8aad1423

Roel Verdult, Flavio D. Garcia, and Barış Ege. 2015. Dismantling Megamos Crypto:
Wirelessly Lockpicking a Vehicle Immobilizer. In 22nd USENIX Security Symposium
(USENIX Security 2013). USENIX Association, 703–718.

Pei Xia, Makoto Matsushita, Norihiro Yoshida, and Katsuro Inoue. 2014. Studying
reuse of out-dated third-party code in open source projects. Information and Media
Technologies 9, 2 (2014), 155–161.

Michal Zalewski. 2014. American fuzzy lop. http://lcamtuf.coredump.cx/afl

http://illmatics.com/Remote%20Car%20Hacking.pdf
https://www.infineon.com/dgdl/inf0010_v1_4Dec2003_1.pdf?fileId=db3a304412b407950112b40f8aad1423
https://www.infineon.com/dgdl/inf0010_v1_4Dec2003_1.pdf?fileId=db3a304412b407950112b40f8aad1423
http://lcamtuf.coredump.cx/afl

	Abstract
	1 Introduction
	2 Related Work
	3 Extracting the Control Flow Graph from ECU Firmware
	3.1 Register Documentation
	3.2 Disassembling Electronic Control Unit Firmware
	3.3 Control Flow Graph Extraction

	4 Fuzzing Electronic Control Units
	4.1 Data Extraction
	4.2 Fuzzer Design

	5 Evaluation and Results
	6 Conclusion
	References

